4,755 | 65 | 202 |
下载次数 | 被引频次 | 阅读次数 |
回顾了密码学发展的3个阶段,从Hash函数及其应用、对称密码体制、非对称密码体制、密码学的应用以及密码学的发展趋势5个方面对现代密码学进行了系统阐述。主要介绍了面向软件的流密码SOSE-MANUK、面向硬件的流密码Grain-128以及消息认证码;公钥密码的最大特点是使用2个不同但相关的密钥将加密和解密能力分开,公钥密码算法的应用一般分为加/解密、数字签名和密钥交换3种,算法的安全性主要取决于构造算法所使用的数学问题的困难性,故设计公钥密码算法的关键是先找到一个合适的单向函数;密码学在实际生活中的应用有公钥基础设施、区块链及电子信封技术实现等,重点介绍了公钥基础设施;量子计算机的出现使得研究抗量子攻击的密码体制的重要性被提升到一个前所未有的高度,目前用于构建后量子密码系统的数学技巧主要有格、多变量方程、代数编码、Hash函数及同源问题等,主要介绍了格密码的发展。
Abstract:This paper reviews the three stages of cryptography development,and elaborates modern cryptography from five aspects:Hash function and its application,symmetric cryptosystem,asymmetric cryptosystem,application of cryptography and trend of cryptography.It mainly introduces SOSEMANUK( a software-oriented stream cipher),Grain-128( a hardware-oriented stream cipher),and message authentication code.The most important feature of public key cryptography is the use of two different but related keys to separate the encryption and decryption capabilities. Generally,there are three applications of public key cryptography: encryption/decryption,digital signature and key exchange.The security of the public key cryptography algorithm depends mainly on the difficulty of the mathematical problem used in the construction algorithm. Therefore,the key to design the public key cryptography algorithm is to find a suitable one-way function. The applications of cryptography in real life include public key infrastructure,block chain,and electronic envelope technology. This paper focuses on public key infrastructure. The quantum computer has raised the importance of studying cryptosystems against quantum attacks to an unprecedented level.The mathematical techniques currently used to construct postquantum cryptosystems include lattice, multivariate equation, algebraic code, hash function, and isogeny problem, and the development of lattice-based cryptography is mainly introduced in this paper.
[1] Shannon C E.Communication Theory of Secrecy Systems[J]. Bell System Technical Journal, 1949, 28(4):656-715.
[2] Diffie W,Hellman M. New Directions in Cryptography[J]. IEEE Transactions on Information Theory,1976,22(6):644-654.
[3]谷利泽,郑世慧,杨义先.现代密码学教程[M].北京:北京邮电大学出版社,2015.
[4]杨波.现代密码学[M].北京:清华大学出版社,2017.
[5] William Stalling.密码编码学与网络安全:原理与实践[M].北京:电子工业出版社,2015.
[6]王育民,刘建伟.通信网的安全:理论与技术[M].西安:西安电子科技大学出版社,1999.
[7] Berbain C,Billet O,Canteaut A,et al.Sosemanuk,A Fast Software-oriented Stream Cipher[M].New Stream Cipher Designs.Springer,Berlin,Heidelberg,2008:98-118.
[8] Hell M,Johansson T,Maximov A,et al.The Grain Family of Stream Ciphers[J]. Lecture Notes in Computer Science,2008,4986:179-190.
[9] Stinson D R.Cryptography:theory and practice[M].Third Edition.USA:CRC Press,2009.
[10] Shor P W.Algorithms for Quantum Computation:Discrete Logarithms and Factoring[C]∥In:35th Annual Symposium on Foundations of Computer Science,IEEE,1994:124-134.
[11] Shor P W.Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J].SIAM Review,1999,41(2):303-332.
[12] Merkow M S,Breithaupt J.Information Security:Principles and Practices[M].USA:Pearson Education,2014.
[13] Proos J,Zalka C.Shor's Discrete Logarithm Qu antum Algorithm for Elliptic Curves[J]. ar Xiv preprint quantph/0301141,2003.
[14] Ajtai M. Generating Hard Instances of Lattice Problems[C]∥In:Proceedings of the 28th Annual ACM Symposium on Theory of Computing.ACM,1996:99-108.
[15] Goldreich O,Goldwasser S,Halevi S.Public-Key Cryptosystems from Lattice Reduction Problems[C]∥In:Annual International Crypto logy Conference. Springer,Berlin,Heidelberg,1997:112-131.
[16] Hoffstein J,Pipher J,Silverman J H.NTRU:A Ring-based Public Key Cryptosystem[C]∥In:International Algorithmic Number Theory Sym posium.Springer,Berlin,Heidelberg,1998:267-288.
[17] StehléD,Steinfeld R.Making NTRU as Secure as Worstcase Problems over Ideal Lattices[C]∥In:Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer,Berlin,Heidelberg,2011:27-47.
[18] Ajtai M,Dwork C.A Public-key Cryptosystem with Worstcase/average-case Equivalence[C]∥In:Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of computing.ACM,1997:284-293.
[19] Regev O.On Lattices,Learning with Errors,Ran-dom Linear Codes,and Cryptography[J]. Journal of the ACM(JACM),2009,56(6):34.
[20] Gentry C,Peikert C,Vaikuntanathan V.Trapdoors for Hard Lattices and New Cryptographic Constructions[C]∥In:Proceedings of the Fortieth Annual ACM Symposium on Theory of computing.ACM,2008:197-206.
[21] Agrawal S,Boneh D,Boyen X.Efficient Lattice(H)IBE in the Standard Model[C]∥In:Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer,Berlin,Heidelberg,2010:553-572.
[22] Agrawal S,Boneh D,Boyen X. Lattice Basis Delegation in Fixed Dimension and Shorter Ciphertext Hierarchical IBE[C]∥In:Annual Cryptology Conference.Springer,Berlin,Heidelberg,2010:98-115.
[23] Cash D,Hofheinz D,Kiltz E,et al.Bonsai Trees,or How to Delegate a Lattice Basis[C]∥In:Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer,Berlin,Heidelberg,2010:523-552.
[24] Rückert M.Lattice-based Blind Signatures[C]∥In:International Conference on the Theory and Application of Cryptology and Information Security.Springer,Berlin,Heidelberg,2010:413-430.
[25] Gordon S D,Katz J,Vaikuntanathan V.A Group Signature Scheme from Lattice Assumptions[C]∥In:International Conference on the Theory and Application of Cryptology and Information Security. Springer,Berlin,Heidelberg,2010:395-412.
[26] Rückert M. Strongly Unforgeable Signatures and Hierarchical Identity-based Signatures from Lattices without Random Oracles[C]∥In:Internat ional Workshop on Post-Quantum Cryptography. Springer,Berlin,Heidelberg,2010:182-200.
[27] Rückert M. Adaptively Secure Identity-based Identification from Lattices without Random Oracles[C]∥In:International Conference on Security and Cryptography for Networks. Springer,Berlin,Heidelberg,2010:345-362.
[28] Peikert C.A Decade of Lattice Cryptography[J].Foundations and Trends?in Theoretical Computer Science,2016,10(4):283-424.
基本信息:
DOI:
中图分类号:TN918.1
引用信息:
[1]王保仓,贾文娟,陈艳格.密码学现状、应用及发展趋势[J].无线电通信技术,2019,45(01):1-8.
基金信息:
国家重点研发计划项目(2017YFB0802000);; 国家自然科学基金项目(61572390,U1736111);; 国家密码学发展基金项目(MMJJ20180111);; 河南省科技创新人才计划(184100510012);; 河南省高校科技创新人才计划(18HASTIT022);; 河南省创新型科技人才队伍建设工程