58 | 0 | 17 |
下载次数 | 被引频次 | 阅读次数 |
提出一种基于可同时透射和反射的有源可重构智能表面(Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface, ASTAR-RIS)辅助的无线供能通信网络(Wireless Powered Communication Network, WPCN)。通信网络主要由采集供电站(Power Station, PS)、传感器节点组(Sensor Node Groups, SNGs)、ASTAR-RIS和接入点(Access Point, AP)4个部分组成。通信系统的运行流程主要分为无线能量传输(Wireless Energy Transfer, WET)和无线信息传输(Wireless Information Transfer, WIT)2个阶段,在无线能量传输阶段采用能量分裂(Energy Splitting, ES)工作模式,在无线信息传输阶段采用分时(Time Switching, TS)工作模式。在联合优化ASTAR-RIS的相移参数和通信资源分配以及放大功率约束的情况下,最大化系统的信噪比,即系统的通信性能达到最佳。由于优化问题是非凸的,采用交替优化算法对问题进行求解,根据耦合的变量将问题分为2个部分,在交替优化算法的基础之上,利用半定松弛(Semidefinite Relaxation, SDR)和分式规划(Fractional Programming, FP)分别求解2个部分的变量的最优解。实验结果表明,提出的通信方案可以为系统提供更高的性能增益。
Abstract:In this paper, a Wireless Powered Communication Network(WPCN) based on Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface(ASTAR-RIS) is proposed. The communication network is mainly composed of four parts: Power Station(PS), Sensor Node Groups(SNGs), ASTAR-RIS and Access Point(AP). The operation process of the communication system is mainly divided into two stages: Wireless Energy Transfer(WET) stage and Wireless Information Transfer(WIT) stage. Energy Splitting(ES) mode is adopted in the wireless energy transmission phase, and Time Switching(TS) mode is adopted in the wireless information transmission phase. This paper aims to optimize the phase shift parameters and communication resource allocation of ASTAR-RIS to maximize system throughput. Since the optimization problem is non-convex, this paper uses an alternate optimization algorithm to solve the problem. Firstly, the problem is divided into two parts according to the coupled variables. The optimal solutions of the variables in these two parts are solved by Semidefinite Relaxation(SDR) and Fractional Programming(FP) respectively. Experimental results show that the communication scheme proposed in this paper can provide higher performance gain for the system.
[1] RABIE K,ADEBISI B,NAURYZBAYEV G,et al.Full-duplex Energy-harvesting Enabled Relay Networks in Generalized Fading Channels[J].IEEE Wireless Communications Letters,2019,8(5):384-387.
[2] HYUNSGSIK J,ZHANG R.Throughput Maximization in Wireless Powered Communication Networks[J].IEEE Transactions on Wireless Communications,2014,13(1):418-428.
[3] BI S Z,HO C K,ZHANG R.Wireless Powered Communication:Opportunities and Challenges[J].IEEE Communications Magazine,2015,53(4):117-125.
[4] XU Y J,TIAN Q Y,ZHANG H B,et al.RIS-enhanced Cognitive BackCom Networks:Robust Resource Allocation and Passive Beamforming Design[J].IEEE Internet of Things Journal,2024,11(23):38815-38828.
[5] WANG Z L,MU X D,LIU Y W.STARS Enabled Integrated Sensing and Communications[J].IEEE Transactions on Wireless Communications,2023,22(10):6750-6765.
[6] 张迪.智能反射表面辅助无线供电通信网络中的安全传输研究[D].重庆:重庆邮电大学,2022.
[7] LIU Y W,LIU X.MU T D,et al.Reconfigurable Intelligent Surfaces:Principles and Opportunities[J].IEEE Communications Surveys & Tutorials,2021,23(3):1546-1577.
[8] XU J Q,LIU Y W,MU X D,et al.STAR-RISs:Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces[J].IEEE Communications Letters,2021,25(9):3134-3138.
[9] LIU Y W,MU X D,XU J Q,et al.STAR:Simultaneous Transmission and Reflection for 360° Coverage by Intelligent Surfaces[J].IEEE Wireless Communications,2021,28(6):102-109.
[10] CHEN Z,CHEN L,HUANG L,et al.RIS-assisted UAV-enabled Wireless Powered Communication Network[C]//International Conference on Information Communication and Signal Processing.Xi'an:IEEE,2023:770-774.
[11] DE PINHO C A M,LIMA F R M.Rate Maximization with QoS Guarantees in IRS-assisted WPCN-NOMA Systems[C]//2022 Workshop on Communication Networks and Power Systems (WCNPS).Fortaleza:IEEE,2022:1-6.
[12] HUA M,WU Q Q.Joint Dynamic Beamforming Design and Resource Allocation for IRS-aided FD-WPCN[C]//2021 IEEE Global Communications Conference (GLOBECOM).Madrid:IEEE,2021:1-6.
[13] ZHU P,QIN L J,WANG J,et al.Optimized Trajectory and Passive Beamforming for STAR-RIS-assisted UAV-empowered O2I WPCN[J].IEEE Wireless Communications Letters,2024,13(1):163-167.
[14] XU Y J,GU B W,GAO Z N,et al.Applying RIS in Multi-user SWIPT-WPCN Systems:A Robust and Environmentally-friendly Design[J].IEEE Transactions on Cognitive Communications and Networking,2023,10(1):209-222.
[15] ZHENG A L,NI W L,WANG W,et al.Enhancing NOMA Networks via Reconfigurable Multi-functional Surface[J].IEEE Communications Letters,2023,27(4):1195-1199.
[16] WANG W,NI W L,TIAN H,et al.Performance Analysis and Optimization of Reconfigurable Multi-functional Surface Assisted Wireless Communications[J].IEEE Transactions on Communications,2023,71(11):6695-6710.
[17] ZHENG A L,NI W L,WANG W,et al.Next-generation RIS:From Single to Multiple Functions[J].IEEE Wireless Communications Letters,2023,12(12):1988-1992.
[18] PANDA B,SINGH P.Performance Analysis of NOMA Systems in Rayleigh and Rician Fading Channels[C]//2021 Advanced Communication Technologies and Signal Processing (ACTS).Rourkela:IEEE,2021:1-6.
[19] BOYD S,VANDENBERGHE L,FAYBUSOVICH L.Convex Optimization[J].IEEE Transactions on Automatic Control,2006,51(11):1859.
[20] SHEN K M,YU W.Fractional Programming for Communication Systems—Part I:Power Control and Beamforming[J].IEEE Transactions on Signal Processing,2018,66(10):2616-2630.
基本信息:
DOI:
中图分类号:TN92
引用信息:
[1]谢文武,袁曾家,李桂林等.STAR-RIS辅助无线供能通信的吞吐量优化研究[J].无线电通信技术,2025,51(05):891-898.
基金信息:
湖南省自然科学联合基金(2023JJ50045)~~