70 | 0 | 12 |
下载次数 | 被引频次 | 阅读次数 |
在未来6G物联网(Internet of Things, IoT)系统中,高频毫米波和太赫兹频谱等关键技术的广泛应用,使近场无线传输成为愈发普遍的应用场景。动态超表面天线(Dynamic Metasurface Antenna, DMA)等小尺寸天线阵列在传输效率、物理尺寸和功耗方面具备优势,在该场景中被广泛应用,相关研究的关注度日益提升。为提升近场无线传输中接收端的能量性能,提出一种基于DMA的下行近场无线数能同传(Simultaneous Wireless Information and Power Transfer, SWIPT)系统,在满足所有信息用户最低传输速率需求的条件下,针对该优化问题提出联合优化DMA可调频响矩阵与数字预编码向量的高效解决方案。此外,深入探讨了用户间距离及最小信干噪比(Signal to Interference plus Noise Ratio, SINR)等因素对于系统性能的影响。仿真结果表明,提出的方案相比其他现有技术能有效提升SWIPT联合性能。
Abstract:In future 6G Internet of Things(IoT) systems, extensive deployment of pivotal technologies such as high-frequency millimeter waves and terahertz spectrum makes it possible for wireless transmission among network devices situated in the near-field region. As a byproduct, Dynamic Metasurface Antenna(DMA) and other small-sized antenna arrays have been widely applied in this scenario due to their advantages in transmission efficiency, physical size, and power consumption. And related research has received increasing attention. Aiming to improve the energy performance of receivers in near-field wireless transmission, a downlink near-field wireless Simultaneous Wireless Information and Power Transfer(SWIPT) system based on DMA is proposed. Under the condition of satisfying the minimum transmission rate requirements of all information users, an efficient solution for jointly optimizing the tunable frequency response matrix of DMA and the digital precoding vector is proposed for this optimization problem. In addition, the influences of factors such as the distance between users and the minimum Signal to Interference plus Noise Ratio(SINR) on the system performance are also discussed on this basis. Simulation results show that the scheme proposed in this paper can effectively improve the joint performance of wireless information and power transmission compared with other existing technologies.
[1] ZHANG Z Q,XIAO Y,MA Z,et al.6G Wireless Networks:Vision,Requirements,Architecture,and Key Technologies[J].IEEE Vehicular Technology Magazine,2019(3):28-41.
[2] GUO F,YU F R,ZHANG H,et al.Enabling Massive IoT Toward 6G:A Comprehensive Survey[J].IEEE Internet of Things Journal,2021,8(15):11891-11915.
[3] CLERCKX B,ZHANG R,SCHOBER R,et al.Fundamentals of Wireless Information and Power Transfer:From RF Energy Harvester Models to Signal and System Designs[J].IEEE Journal on Selected Areas in Communications,2018,37(1):4-33.
[4] GUO Y,ANSARI M,ZIOLKOWSKI R,et al.Quasi-optical Multi-beam Antenna Technologies for B5G and 6G mmWave and THz Networks:A Review[J].IEEE Open Journal of Antennas and Propagation,2021,2:807-830.
[5] CHEN Z,MA X Y,ZHANG B,et al.A Survey on Terahertz Communications[J].Communications,2019,16(2):1-35.
[6] ZHANG H Y,SHLEZINGER N,GUIDI F,et al.Near-field Wireless Power Transfer for 6G Internet of Everything Mobile Networks:Opportunities and Challenges[J].IEEE Communications Magazine(M-COMM),2022,60(3):12-18.
[7] SHLEZINGER N,ALEXANDROPOULOS G C,IMANI M F,et al.Dynamic Metasurface Antennas for 6G Extreme Massive MIMO Communications[J].IEEE Wireless Communications,2021,28(2):106-113.
[8] SMITH D R,GOWDA V R,YURDUSEVEN O,et al.An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone Using a Dynamic,Metasurface Aperture[J].Journal of Applied Physics,2017,121(1):014901.
[9] DIEBOLD A V,IMANI M F,TIMOTHY S,et al.Phaseless Computational Ghost Imaging at Microwave Frequencies Using a Dynamic Metasurface Aperture[J].Applied Optics,2018,57(9):2142.
[10] HOLLOWAY C L,KUESTER E F,GORDON J A,et al.An Overview of the Theory and Applications of Metasurfaces:The Two-dimensional Equivalents of Metamaterials[J].IEEE Antennas and Propagation Magazine,2012,54(2):10-35.
[11] YOO I,SMITH D R.Dynamic Metasurface Antennas for Higher-order MIMO Systems in Indoor Environments [J].IEEE Wireless Communication Letters,2020,9(9):1417-1421.
[12] WILLIAMS R J,PABLO RAMíREZ-ESPINOSA,CARVALHO Y E D.Erratum to “Electromagnetic Based Communication Model for Dynamic Metasurface Antennas”[J].IEEE Transactions on Wireless Communications,2023,22(2):1464.
[13] SMITH D R,YURDUSEVEN O,MANCERA L,et al.Analysis of a Waveguide-fed Metasurface Antenna[J].Physical Review Applied,2017,8(5):054048.
[14] YOU L P,XU J,ALEXANDROPOULOS C G,et al.Energy Efficiency Maximization of Massive MIMO Communications with Dynamic Metasurface Antennas[J].IEEE Transactions on Wireless Communications,2023,22(1):393-407.
[15] SHLEZINGER N,ELDAR Y C,DICKER O,et al.Dynamic Metasurface Antennas for Uplink Massive MIMO Systems[J].IEEE Transactions on Communications,2019,67(10):6829-6843.
[16] HAN Z Q,GUO S,WANG S F.Downlink MMSE Beamforming for Dynamic Metasurface Antennas[C]//2023 3rd International Conference on Electronic Information Engineering and Computer Science(EIECS).Changchun:IEEE,2023:192-196.
[17] KIMARYO S F,LEE K.Downlink Beamforming for Dynamic Metasurface Antennas[J].IEEE Transactions on Wireless Communications,2023,22(7):4745-4755.
[18] JIANG H Y,YOU L,WANG J,et al.Hybrid RIS and DMA Assisted Multiuser MIMO Uplink Transmission With Electromagnetic Exposure Constraints[J].IEEE Journal of Selected Topics in Signal Processing,2022,16(5):1055-1069.
[19] QIAN X,RENZO M D,SCIANCALEPORE V,et al.Joint Optimization of Reconfigurable Intelligent Surfaces and Dynamic Metasurface Antennas for Massive MIMO Communications[C]//2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM).Trondheim:IEEE,2022:450-454.
[20] JIANG H Y,GAO F F,JIAN M H,et al.Reconfigurable Intelligent Surface for Near Field Communications:Beamforming and Sensing[J].IEEE Transactions on Wireless Communications,2023,22(5):3447-3459.
[21] ZHANG H Y,SHLEZINGER N,GUIDI F,et al.Beam Focusing for Near-field Multiuser MIMO Communications[J].IEEE Transactions on Wireless Communications,2022,21(9):7476-7490.
[22] TANG W K,CHEN M Z,CHEN X Y,et al.Wireless Communications with Reconfigurable Intelligent Surface:Path Loss Modeling and Experimental Measurement[J].IEEE Transactions on Wireless Communications,2021,20(1):421-439.
[23] ZHANG H,SHLEZINGER N,GUIDI F,et al.Near-field Wireless Power Transfer with Dynamic Metasurface Antennas[C]//2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).Oulu:IEEE,2022:1-5.
[24] HUANG K L,YOU L,QIAN M Y,et al.MetaSWIPT:DMA-assisted Multi-user MISO Downlink Simultaneous Wireless Information and Power Transfer[J].IEEE Wireless Communications Letters,2024,13(4):1048-1052.
[25] XU J,LIU L,ZHANG R.Multiuser MISO Beamforming for Simultaneous Wireless Information and Power Transfer[J].IEEE Transactions on Signal Processing:A Publication of the IEEE Signal Processing Society,2014,62(18):4798-4810.
[26] WANG H Q.Joint Transmitter and Receiver Design for Uplink MU-MIMO Systems with Dynamic Metasurface Antennas[C]//2022 IEEE 95th Vehicular Technology Conference(VTC2022-Spring).Helsinki:IEEE,2022:1-5.
[27] LUO Z Q,MA W K,SO M C,et al.Semidefinite Relaxation of Quadratic Optimization Problems[J].IEEE Signal Processing Magazine,2010,27(3):20-34.
[28] WU Q Q,ZHANG R.Intelligent Reflecting Surface Enhanced Wireless Network:Joint Active and Passive Beamforming Design[C]//2018 IEEE Global Communications Conference(GLOBECOM).Abu Dhabi:IEEE,2018:5623-5628.
[29] SIDIROPOULOS N D,DAVIDSON T N,LUO Z Q.Transmit Beamforming for Physical-layer Multicasting[J].IEEE Transactions on Signal Processing,2006,54(6):2239-2251.
[30] SHEWCHUK J R.An Introduction to the Conjugate Gradient Method Without the Agonizing Pain[R].Pittsburgh:Carnegie Mellon University,1994.
[31] BECK A,TEBOULLE M.A Fast Iterative Shrinkage-thresholding Algorithm for Linear Inverse Problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.
[32] PEROVI'C N S,TRAN L N,RENZO M D,et al.On the Maximum Achievable Sum-rate of the RIS-aided MIMO Broadcast Channel[J].IEEE Transactions on Signal Processing,2021,70:6316-6331.
基本信息:
DOI:
中图分类号:TN929.5;TN820
引用信息:
[1]谢继尧,赵毅哲,曾其旋等.基于动态超表面天线的近场无线数能同传波束设计[J].无线电通信技术,2025,51(05):899-910.
基金信息:
河南省自然科学基金(252300421516); 河南省科技研发计划联合基金重点项目(225200810033); 郑州航空工业管理学院科研团队支持计划专项(23ZHTD01005);郑州航空工业管理学院教育教学改革研究与实践项目(zhjy24-09);郑州航空工业管理学院研究生教育改革与发展研究项目(2025YJSJG31); 河南省高等学校重点科研项目(26A510017); 宁波市自然科学基金(2024J233); 河南省杰出外籍科学家工作室(GZS2022011)~~