nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2019, 03, v.45;No.269 225-231
人工智能综述:AI的发展
基金项目(Foundation): 国家自然科学基金青年基金项目(61602391)
邮箱(Email):
DOI:
22,121 196 322
下载次数 被引频次 阅读次数
摘要:

人工智能学科自从诞生之后,技术理论不断发展,应用领域不断延伸。应用领域主要包括智能机器人、图像处理、自然语言处理及语音识别等。人工智能的基础理论科学包括计算机科学、逻辑学、生物学、心理学及哲学等众多学科。从人工智能的发展历史、人工智能的技术核心以及人工智能的应用前景3方面讨论人工智能的发展与应用,希望为相关研究提供有益的指导和借鉴。

Abstract:

Since the birth of AI,the theory of technology has been developing continuously and the application field has been extending continuously.Application areas include intelligent robot,image processing,natural language processing,speech recognition and so on.The basic theoretical disciplines of AI include computer science,logic,biology,psychology,philosophy and so on.The development and application of AI are discussed from three aspects:the history of AI,the technical core of AI and the application prospect of AI.It is expected to provide useful guidance and reference for related research.

参考文献

[1] 吕伟,钟臻怡,张伟.人工智能技术综述[J].上海电气技术,2018,11(1):62-64.

[2] 张梓堃.人工智能的历史与发展[J].数字通信世界,2018(11):149-150.

[3] 林永青.人工智能起源处的“群星”[J].金融博览,2017(5):46-47.

[4] 李红霞.人工智能的发展综述[J].甘肃科技纵横,2007(5):17-18.

[5] 中国电子技术标准化研究院.人工智能标准化白皮书 (2018版) [R/OL].(2018-01) [2018-08-07].

[6] 朱祝武.人工智能发展综述[J].中国西部科技,2011,10(17):8-10.

[7] 王晶.人工智能的历史和前景[N].中国教育报,2018,3(5):9.

[8] 贺倩.人工智能技术发展研究[J].现代电信科技,2016,46(2):18-21,27.

[9] Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015:436-444.

[10] Simonyan K,Zisserman A.Very Deep Convolutional Networks for Large-Scale Image Recognition[C/OL]//The 3rd International Conference on Learning Representations (ICLR2015).https://arxiv.org/abs/1409.1556.

[11] Ren S,He K,Girshick R,et al.Faster r-cnn: Towards Real-time Object Detection with Region Proposal Networks[C/OL]//Advances in Neural Information Processing Systems,2015,521(7553):91-94.

[12] He K,Gkioxari G,Dollar P,et al.Mask r-cnn[C]//IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,PP(99):1-1.

[13] Redmon J,Divvala S,Girshick R,et al.You Only Look Once: Unified,Real-time Object Detection [C]//CVPR,2015.

[14] Bolme D S,Beveridge J R,Draper B A,et al.Visual Object Tracking Using Adaptive Correlation Filters[C]//Computer Vision & Pattern Recognition,2010:2544-2550.

[15] Henriques J F,Caseiro R,Martins P,et al.Exploiting the Circulant Structure of Tracking-by- Detection with Kernels[C]//ECCV,2012.

[16] Henriques J F,Caseiro R,Martins P,et al.High-speed Tracking with Kernelized Correlation Filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.

[17] Danelljan,M,Khan F S,Felsberg M,et al.Adaptive Color Attributes for Real-Time Visual Tracking [C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2014.

[18] Danelljan M,H?ger G,Khan F,et al.Accurate Scale Estimation for Robust Visual Tracking[C]//In British Machine Vision Conference,Nottingham,2014,BMVA Press.

[19] Danelljan M,Gustav H,Khan F S,et al.(2016).Learning Spatially Regularized Correlation Filters for Visual Tracking[C]//IEEE International Conference on Computer Vision (ICCV),2016.

[20] Girshick,R,Donahue J,Darrell T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.

[21] Girshick R.Fast R-cnn[C]//2015 IEEE International Conference on Computer Vision (ICCV),2015.

[22] Ren S,He K,Girshick R,et al.(2015).Faster R-cnn: Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):91-99.

[23] Zheng S,Jayasumana S,Romera-Paredes B,et al.Conditional Random Fields as Recurrent Neural Networks[C]//2015 IEEE International Conference on Computer Vision (ICCV),2015.

[24] Cortes C,Vapnik V.Support-vector Networks[J].Machine Learning,1995,20(3):273-297.

[25] Watkins C J C H,Dayan P.Technical Note: Q-learning[J].Machine Learning,1992,8(3-4):279-292.

[26] Mnih V,Kavukcuoglu K,Silver D,et al.Human-level Control Through Deep Reinforcement Learning[J].Nature,2015,518(7540):529-533.

[27] Schulman J,Chen X,Abbeel P.Equivalence between Policy Gradients and Soft Q-learning[J/OL].arXiv.org,2018,arXiv: 1704.06440v4[2018-10-14] https://arxiv.org/abs/1704.06440.

[28] Lowe R,Wu Y,TamarA,et al.Multi-agent Actor-critic for Mixed Cooperative-competitive Environments[C]//In Advances in Neural Information Processing Systems,2017: 6379-6390.

[29] Zambaldi V F,Raposo D,Santoro A,et al.Relational Deep Reinforcement Learning[J/OL].arXiv.org,2018,arXiv:1806.01830v2[2018-06-28] https://arxiv.org/abs/1806.01830 .

[30] Lopez M M,Kalita J K.Deep Learning Applied to NLP[J/OL].arXiv.org,2017,arXiv:1703.03091 [2017-03-09] .https://arxiv.org/abs/1703.03091.

[31] Shi H,Li C,Hu J.Real Multi-Sense or Pseudo Multi-Sense:An Approach to Improve Word Representation[C]∥CL4LC@COLING,OSAKA,JAPAN,2016.

[32] Hoang C D,Haffari G,Cohn T.Decoding as Continuous Optimization in Neural Machine Translation[J/OL].arXiv.org,2017,arXiv: 1701.02854 [2017-07-11].https:∥arxiv.org/abs/1701.02854v1.

[33] Yin W,Schütze H.Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence Matching[C]∥European Chapter of the Association for Computational Linguistics(EACL2017),Valencia,Spain,2017.

[34] Tao C,Mou L,Zhao D,et al.RUBER: An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems [C]//32nd AAAl 2018,New Orleans,LA,USA,2018.

[35] Hinton G,Deng L,Yu D,et al.Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97.

[36] Xiong W,Droppo J,Huang X,et al.Achieving Human Parity in Conversational Speech Recognition [C]//IEEE/ACM Transactions on Audio Speech & Language Processing,2016.

[37] Szeliski R.Computer Vision-Algorithms and Applications[M].Berlin:springer,2010.

[38] Forsyth D A,Ponce J.Computer Vision: A Modern Approach[M].NewJersey:Prentice Hall,2002.

[39] Trivedi M M,Gandhi T,McCall J C.Looking-In and Looking-Out of a Vehicle: Computer-Vision-Based Enhanced Vehicle Safety[J].IEEE Transactions on Intelligent Transportation Systems,2007,8(1):108-120.

[40] Kaelbling L P,Littman M L,Moore A W.Reinforcement Learning: A Survey[J].Journal of Artificial Intelligence Research,1996,4:237-285.

[41] Tsutsui S,Kerola T,Saito S,et al.Minimizing Supervision for Free-Space Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),2018.

[42] Hidasi B,Karatzoglou A,Baltrunas L,et al.Session-based Recommendations with Recurrent Neural Networks[C]//Conference: 10th ACM Conference on Recommender Systems At Boston,USA,RecSys,2016.

[43] Hidasi B,Quadrana M,Karatzoglou A,et al.Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations[C]//Conference: 10th ACM Conference on Recommender Systems,Boston,USA,RecSys 2016.

[44] Tan Y K,Xu X,Liu Y.Improved Recurrent Neural Networks for Session-based Recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,Boston,MA,USA,2016:17-22.

[45] Quadrana M,Karatzoglou A,Hidasi B,et al.(2017).Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks [C]//the Eleventh ACM Conference.ACM,2017.

[46] Reiter E.Building Natural-Language Generation Systems[J].Computational Linguistics,2000,27(2):298-300.

[47] Socher R,Lin C C,Ng A Y,et al.Parsing Natural Scenes and Natural Language with Recursive Neural Networks[C]//the 28th International Conference on Machine Learning,Bellevue,WA,USA,2011.

[48] Collins M,Duffy N.Convolution Kernels for Natural Language[C]//Neural Information Processing Systems 14 (NIPS 2001),2001.

[49] Kumar A,Irsoy O,Su J,et al.Ask Me Anything: Dynamic Memory Networks for Natural Language Processing[C]//the 33rd International Conference on International Conference on Machine Learning,New York,NY,USA,2016.

[50] Hinton G,Deng L,Yu D,et al.Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97.

[51] Hannun A Y,Case C,Casper J,et al.Deep Speech: Scaling up End-to-end Speech Recognition[J/OL].arXiv.org,2014,arXiv: 1412.5567 [2014-12-19] .https://arxiv.org/abs/1412.5567.

基本信息:

DOI:

中图分类号:TP18

引用信息:

[1]崔雍浩,商聪,陈锶奇等.人工智能综述:AI的发展[J].无线电通信技术,2019,45(03):225-231.

基金信息:

国家自然科学基金青年基金项目(61602391)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文