nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.50 713-719
高密度场景下基于改进A~*算法的无人机路径规划
基金项目(Foundation):
邮箱(Email):
DOI:
摘要:

针对无人机在高密度障碍物的城市环境飞行中路径规划实时性难以满足的问题,在A~*算法基础上结合跳点搜索(Jump Point Search, JPS)策略,提出一种Jump A~*(JA~*)算法。将A~*算法进行三维扩展,并提出了一种三维对角距离精确表示了实际路径代价,缩短了搜索时间。在二维JPS策略的基础上拓展得到了三维JPS策略,代替了A~*算法中的几何邻居扩展,大大减少了扩展结点数。对障碍物密度0.1~0.4的复杂三维栅格地图进行了路径规划仿真。仿真结果表明,JA~*算法相较于A~*算法,在高密度多障碍物的近地城市环境下,路径长度几乎不变,评估节点数大幅度减小,搜索速度具有显著提升。

Abstract:

In response to the challenge of achieving real-time path planning for unmanned aerial vehicles flying in High-density urban environments with numerous obstacles, this paper introduces a novel algorithm known as Jump A~*(JA~*). Building upon A~* algorithm and incorporating Jump Point Search(JPS) strategy, JA~* algorithm is proposed. Initially, we extend A~* algorithm into three dimensions and introduce a three-dimensional diagonal distance measurement that precisely represents actual path cost, thereby reducing search time. Subsequently, building upon the two-dimensional Jump Point Search strategy, we extend it to three dimensions, resulting in a 3D-JPS strategy. This 3D-JPS strategy replaces the geometric neighbor expansion used in A~* algorithm and significantly reduces the number of expanded nodes. We conducted path planning simulations on complex three-dimensional grid maps with obstacle densities ranging from 0.1 to 0.4. Simulation results indicate that, in comparison to A~* algorithm, JA~* algorithm exhibits almost identical path lengths while significantly reducing the number of evaluated nodes. This substantial reduction in node expansion leads to a notable improvement in search speed, particularly in near-ground urban environments characterized by High-density obstacles.

参考文献

[1] 霍凤财,迟金,黄梓健,等.移动机器人路径规划算法综述[J].吉林大学学报(信息科学版),2018,36(6):639-647.

[2] 朱磊,樊继壮,赵杰,等.基于栅格法的矿难搜索机器人全局路径规划与局部避障[J].中南大学学报(自然科学版),2011,42(11):3421-3428.

[3] 王春颖,刘平,秦洪政.移动机器人的智能路径规划算法综述[J].传感器与微系统,2018,37(8):5-8.

[4] 张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划[J].哈尔滨工业大学学报,2006,38(8):1306-1309.

[5] FOX D,BURGARD W,THRUN S.The Dynamic Window Approach to Collision Avoidance[J].IEEE Robotics & Automation Magazine,1997,4(1):23-33.

[6] EVERSON L R,SAPATNEKAR S S,KIM C H.A Time-based Intra-memory Computing Graph Processor Featuring A* Wavefront Expansion and 2-D Gradient Control[J].IEEE Journal of Solid-state Circuits,2021,56(7):2281-2290.

[7] PRIM R C.Shortest Connection Networks and Some Generalizations[J].The Bell System Technical Journal,1957,36(6):1389-1401.

[8] DA SILVA C L,TONIDANDEL F.DVG+ A* and RRT Path-planners:A Comparison in a Highly Dynamic Environment[J].Journal of Intelligent & Robotic Systems,2021,101:58.

[9] DORIGO M,GAMBARDELLA L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.

[10] HARABOR D,GRASTIEN A.Online Graph Pruning for Pathfinding on Grid Maps[EB/OL].[2024-02-20].https://cdn.aaai.org/ojs/7994/7994-13-11522-1-2-20201228.pdf.

[11] 王文明,杜佳璐.基于正六边形栅格JPS算法的智能体路径规划[J].系统工程与电子技术,2021,43(12):3635-3642.

[12] 张庆,刘旭,彭力,等.融合JPS和改进A*算法的移动机器人路径规划[J].计算机科学与探索,2021,15(11):2233-2240.

[13] 赵晓,王铮,黄程侃,等.基于改进A*算法的移动机器人路径规划[J].机器人,2018,40(6):903-910.

[14] 林思伟,席万强,李青云,等.复杂环境下的无人机三维路径规划[J].电光与控制,2023,30(2):31-35.

[15] 赵卫东,唐顾杰,宋江一.基于改进JPS与三次B样条插值的路径规划算法[J].安徽工业大学学报(自然科学版),2022,39(2):189-195.

[16] 宋晓茹,任怡悦.面向移动机器人快速全局路径规划的改进跳点搜索算法[J].科学技术与工程,2020,20(29):11992-11999.

[17] 胡士强,武美萍,施健,等.融合向量叉积与跳点搜索策略的改进A*算法研究[J/OL].机械科学与技术,2023:1-10(2023-01-06)[2024-03-02].https://doi.org/10.13433/j.cnki.1003-8728.20230017.

[18] 谢春丽,高胜寒,孙学志.融合改进A*算法和贝塞尔曲线优化的路径规划算法[J].重庆理工大学学报(自然科学),2022,36(7):177-187.

[19] 田茹,曹茂永,马凤英,等.基于改进A*算法的农用无人机路径规划[J].现代电子技术,2022,45(4):182-186.

[20] 罗隆福,李冬,钟杭.基于改进RRT的无人机电力杆塔巡检路径规划[J].湖南大学学报(自然科学版),2018,45(10):80-86.

基本信息:

DOI:

中图分类号:V279;TP18

引用信息:

[1]赵烈海,李大鹏.高密度场景下基于改进A~*算法的无人机路径规划[J].无线电通信技术,2024,50(04):713-719.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文