162 | 0 | 124 |
下载次数 | 被引频次 | 阅读次数 |
海上主要港口和航道上船舶吞吐量大,陆基船舶通信链路被过往船舶遮挡的时间长、频次高,严重影响陆基船舶通信链路的连接质量。针对船岸通信信道测量场景中发生的由过往大型船舶驶过造成遮挡而产生的阴影效应,结合高精度实测数据对这一现象的大尺度信道特性进行了分析和建模。结合阴影效应发生位置的第一菲涅尔半径、离岸距离、收发天线路径距离、天线连线高度和海面曲率引起的相对高度变化等影响因素的内在联系,解析了阴影效应发生时遮挡船只的整个运动过程,并对第一菲涅尔区与遮挡船只相对位置对应的不同时间节点进行了分类。基于ITU-R P.526-15 (2019年10月)建议书中的单个刀刃形绕射模型和单个圆形绕射模型,结合船只和第一菲涅尔区的相对关系,构建了基于遮挡船的三维数据和收发端相对位置的船舶绕射损耗模型,针对实测过程中D06(0.6倍第一菲涅尔区间隙对应的路径距离)范围内和范围外两种情况下的两次船舶遮挡过程进行了模型仿真和实测数据比对分析,并结合分析结果提出了未来的应用方向。
Abstract:The huge number and throughput of ships in major maritime ports and waterways leads to frequent blockage of land-based ship communication links by passing ships.This significantly impacts the connection quality of land-based ship communication links.By analyzing the large-scale channel characteristics resulting from the shadow effect caused by passing large ships in the ship-shore communication channel measurement scene, we have developed a precise model based on measured data.The analysis incorporates factors such as the first Fresnel radius, offshore distance, receiver antenna path distance, antenna connection height, and relative height change due to sea surface curvature.It also classifies different time nodes corresponding to the relative position of shielded ships in the first Fresnel region.Furthermore, a ship diffraction loss model is constructed based on three-dimensional occluding ship data and relative positions of receiving and originating ends using single blade diffraction model and single circular row diffraction model recommended in ITU-R P.526-15(10/2019).Model simulation and comparison analyses for two ship occlusion processes within D06 range(the distance of 0.6 times the First Fresnel Zone clearance) and outside this range are conducted, with proposed future application directions based on these results.
[1] LIU R Q,LIN H,LEE H,et al.Beginning of the Journey Toward 6G:Vision and Framework[J].IEEE Communications Magazine,2023,61(10):8-9.
[2] 张建华,张骥威,张宇翔,等.面向6G的RIS信道测量与建模研究进展[J].无线电通信技术,2024,50(2):227-237.
[3] 张平,张建华,戚琦,等.Ubiquitous-X:构建未来6G网络[J].中国科学:信息科学,2020,50(6):913-930.
[4] IMT-2030(6G)推进组.面向6G的信道测量与建模研究报告[R/OL].(2023-12-01)[2024-05-13].https://www.imt2030.org.cn/html/default/zhongwen/chengguofabu/yanjiubaogao/index.html?index=2%EF%BC%8E.
[5] HE R S,MOLISCH A F,TUFVESSON F,et al.Vehicle-to-Vehicle Propagation Models with Large Vehicle Obstructions[J].IEEE Transactions on Intelligent Transportation Systems,2014,15(5):2237-2248.
[6] 张洪铭,闫实,唐斌,等.海上无线通信技术:现状与挑战[J].无线电通信技术,2021,47(4):392-401.
[7] CHEE K L,TORRICO S A,KURNER T.Radiowave Propagation Prediction in Vegetated Residential Environments[J].IEEE Transactions on Vehicular Technology,2013,62(2):486-499.
[8] YANG M,AI B,HE R S,et al.Path Loss Analysis and Modeling for Vehicle-to-Vehicle Communications with Vehicle Obstructions[C]// 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP).Hangzhou:IEEE,2018:1-6.
[9] TOPCU S,GOKTAS P,KARASAN E,et al.A New Approach to Diffraction Modelling for Line-of-Sight (LoS) paths[C]// 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC).Turin:IEEE,2015:696-699.
[10] 刘利强,宋志群,陈大勇.山区通信中单刃峰绕射损耗的工程化近似模型[J].无线电通信技术,2015,41(1):24-27.
[11] WANG W,JOST T,RAULEFS R.A Semi-deterministic Path Loss Model for In-harbor LoS and NLoS Environment[J].IEEE Transactions on Antennas and Propagation,2017,65(12):7399-7404.
[12] LIAO X,LI X,WANG Y,et al.Path Loss Modeling in Urban Water-Land Environments at 28 GHz:Considering Water Surface Reflection and Building Diffraction[J].IEEE Antennas and Wireless Propagation Letters,2023,22(4):744-748.
[13] YANG K,R?STE T,BEKKADAL F,et al.Channel Characterization of Mobile Radio Channel over Sea at 2 GHz[C]// 2010 10th Mediterranean Microwave Symposium.Guzelyurt:IEEE,2010:389-392.
[14] YANG K,R?STE T,BEKKADAL F,et al.Channel Characterization Including Path Loss and Doppler Effects with Sea Reflections for Mobile Radio Propagation over Sea at 2 GHz[C]// 2010 International Conference on Wireless Communications & Signal Processing (WCSP).Suzhou:IEEE,2010:1-6.
[15] YANG K,EKMAN T,R?STE T,et al.A Quasi-deterministic Path Loss Propagation Model for the Open Sea Environment[C]// 2011 The 14th International Symposium on Wireless Personal Multimedia Communications (WPMC).Brest:IEEE,2011:1-5.
[16] YANG K,MOLISCH A F,EKMAN T,et al.A Round Earth Loss Model and Small-scale Channel Properties for Open-sea Radio Propagation[J].IEEE Transactions on Vehicular Technology,2019,68(9):8449-8460.
[17] ITU.ITU-R P.526-15.Propagation by Diffraction[S/OL].[2024-05-13].https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-15-201910-I!!PDF-E.pdf.
[18] YANG K,R?STE T,BEKKADAL F,et al.Land-to-Ship Radio Channel Measurements over Sea at 2 GHz[C]// 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).Chengdu:IEEE,2010:1-4.
[19] YANG K,R?STE T,BEKKADAL F,et al.Long-distance Propagation Measurements of Mobile Radio Channel over Sea at 2 GHz[C]// 2011 IEEE Vehicular Technology Conference (VTC Fall).San Francisco:IEEE,2011:1-5.
[20] 和玮苹.3G网络规划中的海面传播模型及其校正[D].西安:西北工业大学,2006.
基本信息:
DOI:
中图分类号:TN929.5
引用信息:
[1]徐贝柠,杨堃,鄢社锋等.陆基海洋通信船舶绕射损耗模型研究[J].无线电通信技术,2024,50(05):868-875.
基金信息:
国家自然科学基金专项项目(62341127); 舟山市科技计划项目(2024C03007)~~